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S.É. Derkachov1, J.A. Gracey2, A.N. Manashov3

1 Department of Mathematics, St Petersburg Technology Institute, Sankt Petersburg, Russia (e-mail: derk@tu.spb.ru)
2 Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZF,

United Kingdom (e-mail: jag@amtp.liv.ac.uk)
3 Department of Theoretical Physics, State University of St Petersburg, Sankt Petersburg, 198904 Russia

(e-mail: manashov@snoopy.phys.spbu.ru)

Received: 12 May 1997 / Published online: 20 February 1998

Abstract. We compute the anomalous dimensions of a set of composite operators which involve derivatives
at four loops in MS in φ4 theory as a function of the operator moment n. These operators are similar to the
twist-2 operators which arise in QCD in the operator product expansion in deep inelastic scattering. By
regarding their inverse Mellin transform as being equivalent to the DGLAP splitting functions we explore
to what extent taking a restricted set of operator moments can give a good approximation to the exact
four loop result.

1 Introduction

The scalar field theory with a φ4 interaction has been
widely studied for a variety of problems. For instance, it
underlies the physics of the anti-ferromagnetic phase tran-
sition in statistical physics and also is the starting point
for the Higgs mechanism of the standard model in particle
physics. From another viewpoint it has been used as a toy
model in four dimensions to examine fundamental ideas in
quantum field theory. One such example is understanding
perturbation theory at high orders. (For a review of these
points see, for example, [1].) In particular the fundamental
functions of the renormalization group like the β-function
are known to five loops in the MS scheme, [2,3]. In other
field theories of interest in particle physics such as gauge
theories four loop results have only become available in
the last few years. For instance the four loop β-functions
of QED and QCD, which describes the strong interactions,
were computed in [4,5] respectively.

Such calculations are necessary in QCD primarily be-
cause it is asymptotically free and therefore it describes
the physics of high energy collisions involving quarks. As
these deep inelastic experiments are becoming increas-
ingly more accurate the theoretical input must be refined
accordingly. Therefore current perturbative calculations
in QCD have been focussed on the contribution of the
anomalous dimensions and coefficient functions of the twist-
2 flavour non-singlet and singlet operators that arise in the
operator product expansion. These were originally com-
puted at one and two loops in [6,7] as a function of the mo-
ment of the operator n. Recently the first few moments of
the three loop dimensions were determined in [8,9]. How-

ever, the programme is not yet complete as one requires
the explicit n-dependence at three loops. This is required
in order to compute the DGLAP splitting functions, [10],
which are given by the inverse Mellin transform with re-
spect to n. In [9] an approximate fitting procedure was
developed to obtain these functions. This was achieved
by using general information on the (expected) form of
the function in Bjorken x, which is the variable conjugate
to n with 0 ≤ x ≤ 1. Also the information from the ex-
plicit exact result for the first few moments was used to
constrain the fitting parameters. In the absence of a full
n-dependent result for the operator dimensions this strat-
egy has to suffice for present. Clearly there are several
potential problems in such an exercise. For example, the
first few moments would only be expected to give a fairly
accurate approximation to the splitting functions in the
bulk of the x-range. However, the low x region which is
presently of physical interest would not be well covered
since there the higher moments give important contribu-
tions. So it would be useful to understand to what extent
such a fitting procedure can be relied upon.

Whilst the complete calculation in QCD will be a formi-
dable computational task one could at least address this
and other issues in a toy model. This is the primary mo-
tivation for this paper. We will compute the anomalous
dimensions of the analogous operators in φ4 theory to
four loops in the coupling constant expansion in the MS
scheme. Although this would appear to be one order be-
yond that currently of interest in QCD, it turns out that
due to the form of the model there can be no one loop
contribution. We view this theory as a toy for several rea-
sons. First, the nature of the interaction is simpler than in
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a non-abelian gauge theory and hence there will be sub-
stantially fewer diagrams to consider and also no tensorial
complication in the numerator of the Feynman diagrams
which occurs when one has fermion and derivative cou-
plings. Consequently although we do not expect the re-
sults to be as involved as those which will undoubtably
occur when the full QCD result is realised, those func-
tions of n, such as finite sums in n, which will occur will
at least mimic analogous structures. Indeed as will be seen,
it is these forms which will drive the strategy of the fit-
ting procedure. As we will obtain the full 4-loop results
as a function of n we will be in a position to investigate
and gain insight into the approximation procedure for the
splitting functions.

This leads us to our second reason why we will regard
our work as a laboratory for testing ideas. Clearly un-
like QCD φ4 theory in four spacetime dimensions is not
asymptotically free and therefore it does not make sense
to think of the high energy limit describing particle colli-
sions. However we stress that the aim is a mathematical
one to endeavour to understand the relation of functions
of the operator moment n to their Mellin transform which
in φ4 we will regard as being on the same footing as the
DGLAP functions. In this situation asymptotic freedom
plays a minimal role. Finally, our second motivation for
this study is in relation to understanding the content of
the operator product expansion of φ4 in d-dimensions. As
noted earlier the model relates to the perturbation theory
of the Heisenberg model which equivalently, in the sense
of critical phenomena, can be described by the O(N) non-
linear σ model in d = (2 + ε) dimensions. (See, for exam-
ple, [1].) The operator product expansion in that model
has received wide attention in recent years both pertur-
batively and in the 1/N expansion, [11]. Therefore the
computation of the anomalous dimension of a set of op-
erators involving derivatives or gradients at high order in
the related φ4 theory is important for providing at least
a cross check on future perturbative calculations in this
area.

The paper is organised as follows. In Sect. 2, we re-
view basic features of the renormalization of composite
operators in quantum field theories and then perform the
two and three loop computations for the anomalous di-
mensions of the operators in question. This calculation
is extended to the fourth order in Sect. 3 where we also
discuss the technical details of the determination of the di-
vergent part of some of the underlying Feynman integrals.
These results are then used to deduce the corresponding
splitting functions in Sect. 4 where the approximate fit-
ting procedure is analysed. Our conclusions are given in
Sect. 5 and intermediate results in the four loop calcula-
tions are given in an appendix.

2 Preliminaries

We begin our discussion by reviewing the background to
the computation of anomalous dimensions of composite
operators. We will concentrate on one particular set of

operators in this paper,

On = φ(x)∂µ1 . . . ∂µnφ(x) − traces (2.1)

which are twist-2 from the phenomenology point of view
and symmetric and traceless. The field φ is the basic field
of the φ4 theory which has the lagrangian

L =
1
2
(∂φ)2 − g

24
(φ2)2 (2.2)

where g is the coupling constant which is dimensionless in
4-dimensions. As we will be applying standard techniques
of renormalization such as dimensional regularization in
d = 4 − 2ε dimensions and using the modified minimal
subtraction scheme, (MS), we must derive the momentum
space version of the operator. Its divergent structure is
deduced from the divergence structure of 2-point Green’s
functions where On has been inserted. Therefore we write
∫

ddx

(2π)d
On =

∫
ddp

(2π)d
φ̃(−p)Tn(p)µ1...µn

φ̃(p) (2.3)

where Tn(p)µ1...µn is a symmetric traceless tensor. It is
more convenient to swamp the Lorentz indices by con-
tracting with a constant vector ∆µ and define the object

Tn(p,∆) = Tn(p)µ1...µn
∆µ1 . . . ∆µn (2.4)

Given the fact that Tn(p) is traceless one can derive the
form of Tn(p,∆). However, in higher order calculations
we will exploit the first two terms in the construction of
recurrence relations for subintegrals. Therefore we record,

Tn(p,∆) = (∆p)n − n(n− 1)
4(n+ d− 3)

p2∆2(∆p)n−2

+ O((∆2)2(∆p)n−4) (2.5)

In QCD calculations [6–9] the constant vector is usually
taken to be a null vector in which case (2.5) terminates at
the first term.

The anomalous dimension we are aiming to compute is
γn(g). In terms of renormalization constants this is defined
to be

γn(g) = M2 ∂

∂M2 ln(Z−1
1 ZO) (2.6)

where M is the mass scale introduced to ensure g remains
dimensionless in d-dimensions. The renormalization con-
stant Z1/2

1 corresponds to the renormalization of the field
φ and is known at five loops in the more general theory
with an internal O(N) symmetry [3]. The lower order cal-
culations were performed in [2]. In our notation defining

γ(g) = 2γφ(g) = M2 ∂

∂M2 lnZ1 (2.7)

then, for N = 1,

γ(g) =
1
6
g2 − 1

8
g3 +

65
81
g4 (2.8)
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Fig. 1. Two and three loop graphs contributing to γn(g)

The remaining renormalization constant ZO defines the
renormalization group function γO(g) via

γO(g) = M2 ∂

∂M2 lnZO (2.9)

which corresponds to the renormalization of the operator
insertion in the one particle irreducible 2-point Green’s
function. From the nature of the quartic interaction γO(g)
will have the O(g2) term as the first non-zero contribu-
tion. In the analogous calculation in QCD we note that
the twist-2 operators are physical operators and therefore
their anomalous dimensions are gauge independent. How-
ever the renormalization group functions corresponding to
γ(g) and γO(g) are each gauge dependent. Therefore al-
though there is no gauge symmetry in φ4 it is γn(g) which
we will regard as being on the same footing as the gauge
independent dimensions in QCD.

We now detail the computation of the two and three
loop contributions to (2.9). These results will play an im-
portant role in the four loop calculation where they will
enter multiplied by vertex counterterms for example. Al-
though strictly it is their ε-expansion to O(ε) and O(1)
respectively for two and three loops which we will need it
is in fact possible to compute the relevant integrals exactly
as a function of d. The two loop contribution to (2.9) arises
from the first graph of Fig. 1 where the line with a dot on
it represents the insertion of the operator Tn(p,∆). There
is a flow of momenta p through the external legs of the
Green’s function. As we are interested only in the ultra-
violet divergence of the graphs we compute with massless
propagators which in turn allows us to exploit massless
integration techniques such as uniqueness [12,13]. How-
ever for the lower order cases one needs only to apply, for
instance, the elementary chain rule of [12]. Therefore the
exact result for the value the 2-loop graph of Fig. 1 is

ν(1, 1, 2µ− 2)ν0nn(2 − µ, 2, 3µ− 4 + n) (2.10)

where d = 2µ = 4 − 2ε,

ν(α, β, γ) = πµa(α)a(β)a(γ) ,
νmnp(α, β, γ) = πµam(α)an(β)ap(γ) (2.11)

a(α) = Γ (µ− α)/Γ (α) and an(α) = Γ (µ− α+ n)/Γ (α).
The p and ∆ dependence is easy to reconstruct from the
integral dimension. Performing the ε-expansion of (2.10)
and including the symmetry factor of 1/2 gives the con-
tribution to (2.9) as

g2

2n(n+ 1)ε
(2.12)

The three loop calculation requires the calculation of
the second graph of Fig. 1. As there are two graphs with
the same topology we have included both in the same
diagram with their respective names, E1 and E2. Again it
is straightforward to compute each integral exactly using
the chain rule of [12] and we find that their values are

E1 = (ν(1, 1, 2µ− 2))2

νn0n(2, 4 − 2µ, 4µ− 6 + n) (2.13)
E2 = ν(1, 1, 2µ− 2)νn0n(2, 1, 2µ− 3 + n)

νn0n(5 − 2µ, 1, 4µ− 6 + n) (2.14)

However each graph has at least one subgraph divergence
arising when either one or both loops can be enclosed by a
box. The divergence arising from these subgraphs are can-
celled by multiplying the two loop graphs of Fig. 1 by the
relevant (vertex) counterterm. In this and the four loop
case we include in our expressions for the final value of
the divergent part of the graphs the subtraction of these
subgraph divergences. (Further background to this proce-
dure is well documented in, for example, [14].) However it
is appropriate to record that for E2 the subtraction is

a2(1)an(2)an(3µ− 4 + n)/ε (2.15)

Hence the full MS contributions to (2.9) at O(g3) are

E1 = − 1
3n(n+ 1)ε2

+
(2n2 − 1)

3n2(n+ 1)2ε
(2.16)

E2 = − 1
6n(n+ 1)ε2

+
(

− S1(n)
3n(n+ 1)

+
(4n2 + 2n− 1)
6n2(n+ 1)2

)
1
ε

(2.17)

where the finite sums Sl(n) are defined as Sl(n) =
∑n

j=1

1/jl. With these values we deduce that

γO(g) =
1

n(n+ 1)
g2 +

(
2S1(n)
n(n+ 1)

− (10n2 + 4n− 3)
2n2(n+ 1)2

)
g3 (2.18)

3 Four loop calculation

We now turn to the renormalization of the operator at
the four loop level. There are four basic topologies to be
considered which are illustrated in Fig. 2. As in Fig. 1 we
have indicated the location of the operator insertion by
a dot and denoted the corresponding graph by the sym-
bol beside each insertion. Of these four topologies sets
C and D represent integrals whose divergence structure
and subgraph subtractions can be computed directly by
elementary chain integrals involving (2.11) and we will
not discuss them further. Likewise integral A2 is trivial to
compute. The remaining graphs required some ingenuity
and we detail the techniques for several as an aid to the
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Fig. 2. Four loop graphs contributing to γn(g)

Fig. 3. Intermediate steps in the calculation of A1

interested reader and a potential method for future similar
problems.

First, we consider the integral A1 and detail its cal-
culation. It can quickly be reduced to the 2-loop integral
illustrated in the first graph of Fig. 3 where the factor
arising from the integrations is

an(1 + 3ε)(a(1))3

4ε2(1 − 2ε)(n+ 1 − 5ε)a(1 + ε)an(1 + 4ε)
(3.1)

In Fig. 3 we denote the power of the propagator beside
each line if it is not unity and the location of the numerator
(∆y)n by the symbol (n) and an arrow on the line beside
the propagator involving y. We have used the coordinate
space representation of the integrals so that the variables
of integration are the location of the vertices and not the
flow of momentum around a loop, [12]. On dimensional
grounds the value of this integral is

A1(ε, n)
(∆p)n

p2

(
M2

p2

)3ε

(3.2)

and the aim is to deduce A1(ε, n) to the term linear in ε.
This is because (3.1) is O(1/ε2). The first step is to relate
A1(ε, n) to an integral with all exponents unity or O(ε)

which is achieved by the integration by parts rule given
in [12,15]. The result is the set of integrals on the right
side of the first equation of Fig. 3. The three terms with
a line missing are easy to compute exactly and give the
contribution to A1(ε, n) of

a(1)a(1 + ε)an(1 + 2ε)
6ε(n+ 1 − 4ε)an(1 + 3ε)

[
an(1)

(n− ε)an(1 + 2ε)

− a(1)
(1 − 3ε)a(1 + 2ε)

]
(3.3)

The remaining two diagrams have similar structure. If we
denote by b1(ε, n) the value of the first graph on the right
side of Fig. 3 then we can obtain a recurrence relation
for b1(ε, n) with respect to n which can be solved. One
way of achieving this is to consider the integral without
the∆ contraction and decompose the numerator structure
yµ1 . . . yµn

into a sum of symmetric and traceless objects
y(µ1...µn) defined in [13]. As such objects are independent
the resulting integral must be a sum of the set y(µ1...µr)
with r ≤ n where the balance of indices is made up by
including the appropriate number of ηµν tensors. Their
coefficients are functions of n with the leading term cor-
responding to b1(ε, n). This is deduced by eliminating the
next to leading order term between the equations obtained
by first contracting with ∆µ1 . . . ∆µn

and applying the
differential operator xµ∂/∂∆

µ and second by contracting
with, say, ηµn−1µn . This results in the relation

b1(ε, n) = rn[b1(ε, n− 1) + c1(ε, n− 1)] (3.4)

where c1(ε, n) is defined in the second equation of Fig. 3
and

rn =
(n+ µ− 2)
(n+ 2µ− 3)

(3.5)

Clearly the solution to (3.4) is

b1(ε, n) = b1(ε, 0)

(
n∏

i=1

ri

)

+
n∑

k=1

c1(ε, k − 1)

(
n∏

i=k

ri

)
(3.6)

The integral b1(ε, 0) has been computed explicitly in [16]
and has the value

b1(ε, 0) =
(1 − 5ε)a2(1)a(1 + ε)

3ε2(1 − 3ε)2(1 − 4ε)a(1 + 3ε)
(3.7)

in our notation. For c1(ε, n) the second term is

1
3(n− ε)(1 − 3ε)(n+ 1 − 3ε)(n+ 1 − 4ε)
a(1)a(1 + ε)an(1)

an(1 + 3ε)
. (3.8)

whilst the first and third are similar in form where, for
example, it is simple to derive the integral representation
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for the first graph of the second equation of Fig. 3 as

1
3(1 − 2ε)(1 − 3ε)

Γ (1 + 3ε)
Γ (1 + ε)

∫ 1

0
ds s−ε(1 − s)1−2ε

∫ 1

0
dt t1−3ε(1 − t)−ε[1 − st]n (3.9)

Since we are only interested in the divergent part of A1 it
is straightforward to expand the integral in powers of ε to
the O(ε) term and obtain for it alone

∫ 1

0
ds s−ε(1 − s)1−2ε

∫ 1

0
dt t1−3ε(1 − t)−ε[1 − st]n

=
1

(n+ 1)
− S1(n+ 2)

(n+ 1)(n+ 2)

+
ε

(n+ 1)

[
3 + S1(n+ 2) +

3S1(n+ 2)
(n+ 2)

− 2S2
1(n+ 2)
(n+ 2)

− 5S2(n+ 2)
(n+ 2)

]
+O(ε2) (3.10)

Hence we have

b1(ε, n) =
(1 − 2ε)(1 − 5ε)

3ε2(1 − 3ε)2(1 − 4ε)(n+ 1 − 2ε)
an(1)a2(1 + ε)a(1)
a(1 + 3ε)an(1 + ε)

+
1

3(n+ 1)

[
2 − S2(n+ 1) − S1(n+ 1)

(n+ 1)

]
(3.11)

Assemblying all the relevant contributions and factors like
(3.1) and expanding in powers of ε we deduce that the
divergent part of A1 itself is

1
8n(n+ 1)ε3

+
1
ε2

(
S1(n)

4n(n+ 1)
+

(5n2 + 11n+ 1)
8n2(n+ 1)2

)

+
1
ε

(
(2S2(n) + S2

1(n))
4n(n+ 1)

+
(5n2 + 11n+ 1)S1(n)

4n2(n+ 1)2

+
(19n4 + 68n3 + 85n2 + 12n+ 1)

8n3(n+ 1)3

)
+ O(1)

(3.12)

Performing the simple operation of subtraction of sub-
graph divergences yields the result for A1 which we have
recorded in (A.1).

Another technique was also used to compute several of
the other graphs of Fig. 2 and we detail this for graph B1.
After performing the two elementary loop integrations we
obtain a simple two loop graph. Rather than considering
this graph we examine the more general graph illustrated
in Fig. 4 where we have introduced an extra parameter a
and the (analytic) regularization δ. Denoting the value of
this graph by B1(ε, a, δ) we record that for the problem
in hand we require B1(ε, 1, 0). The presence of a general a
and δ will allow us more freedom in using various calcula-
tional techniques such as uniqueness to obtain expressions
to determine the coefficients in the power series.

Fig. 4. Intermediate integrals in the calculation of B1

The first step is to apply the operator ∆µ∂/∂p
µ to the

diagram to yield the two graphs I1 and I2 of Fig. 4 where

B1(ε, a, δ) =
1

(3 + a)ε
[aεI1 + (1 − δ)I2] (3.13)

Whilst the former is finite with respect to ε the second is
divergent. It is determined by integrating by parts on the
integral with the same exponent structure on each line
except that 1 is subtracted from the top right line and
added to the bottom right. Substituting the result of this
operation into (3.13) we obtain

B1(ε, a, δ) =
1

(3 + a)ε
[(1 − δ)J2(ε, a, δ) + F (ε, a, δ)]

(3.14)
where J2 is integral given in Fig. 4 and F (ε, a, δ) repre-
sents the sum of the remaining graphs which are finite with
respect to ε. As J2(ε, a, δ) is a set of elementary chain inte-
grals all that remains is the calculation of F (ε, 1, 0) whose
O(ε) term is needed due to the pole in ε in (3.14). This is
achieved by expanding in powers of a and ε

F (ε, a, δ) = f0 + (f1 + af2)ε + O(ε2) (3.15)

and then determining the constant coefficients fi. Rewrit-
ing F (ε, a, δ) from (3.14) as

F (ε, a, δ) = (3 + a)εB1(ε, a, δ) − (1 − δ)J2(ε, a, δ)
≡ D(ε, a, δ) (3.16)

then it can be evaluated for special cases of a to give

F (ε, 1, 0) = 2D(ε, 0, 0) − D(ε,−1, 0) (3.17)

In the explicit evaluation of the integrals, however, there
is a potential problem when using uniqueness to integrate
the right triangle of B1(ε,−1, 0). To avoid the appearance
of factors such as Γ (0) in both numerator and denomi-
nator one needs the temporary regulator δ and so (3.17)
ought to be replaced by

F (ε, 1, 0) = [2D(ε, 0, δ) − D(ε,−1, δ)]δ→0 (3.18)

As an aid we record the results of these intermediate steps
as

J2(ε, 1, 0) =
a(1)a(1 + ε)an(1 + ε)a1(2)

a(2ε)an+1(1 + 2ε)
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D(ε, 0, 0) =
a3(1)
a(ε)

(
an(1 + 2ε)
an+1(1 + 3ε)

− an(1 + ε)
an+1(1 + 2ε)

)

D(ε,−1, 0) =
an(1 + ε)

(1 − ε)(n+ 1 − 3ε)2an(1 + 2ε)
(3.19)

With these expressions it is a simple exercise to verify that
the result (A.4) is finally obtained for graph B1.

We have used either of these algebraic techniques out-
lined here to evaluate the remaining divergent parts of
the integrals. For completeness the results for each are
recorded in the appendix where the subgraph divergences
have been removed. In several of the results the additional
finite sum Kl(n) =

∑n
j=1(−1)(j+1)/jl occurs. In (A.6), for

instance, it arises in the computation of an intermediate
two loop integral where the exponents on the lines diago-
nally opposite each other are 2 and 1 − ε respectively and
the central line has zero exponent but an (n) insertion.
However, its ε-expansion is elementary to compute using
the rule for chains after the application of the binomial
expansion. Also in the graph A3 after completing the first
two elementary loop integrals one is left with a two loop
integral multiplied by 1/ε. This integral, which is finite
with respect to ε, has been evaluated explicitly in [17] and
involves K2(n).

Finally it is a simple exercise to assemble all the con-
tributions to the four loop result and allowing for the sym-
metry factors of the graphs which are given in Table 1, we
find the O(g4) term of (2.18) is

3S2(n)
n(n+ 1)

+
S2

1(n)
n2(n+ 1)2

− (89n2 + 53n− 18)S1(n)
6n2(n+ 1)2

− (n2 + n− 4)K2(n)
n2(n+ 1)2

+
(265n4 + 280n3 − 36n2 − 39n+ 33)

12n3(n+ 1)3
(3.20)

We summarize the results of this and the previous section
by recording our 4-loop MS value for γn(g) as

γn(g) = − (n− 2)(n+ 3)
6n(n+ 1)

g2 +
(

2S1(n)
n(n+ 1)

+
(n4 + 2n3 − 39n2 − 16n+ 12)

8n2(n+ 1)2

)
g3

+
(

3S2(n)
n(n+ 1)

+
2S2

1(n)
n(n+ 1)

− (89n2 + 53n− 18)S1(n)
6n2(n+ 1)2

− (n2 + n− 4)K2(n)
n2(n+ 1)2

(3.21)

+
(265n4 + 280n3 − 36n2 − 39n+ 33)

12n3(n+ 1)3
− 65

81

)
g4

One non-trivial check on this result is that it vanishes for
n = 2. In that case the original operator corresponds to
the energy momentum tensor which is conserved in the
quantum theory. It is well established that the anomalous
dimension of non-anomalous conserved physical currents
vanish to all orders in perturbation theory. (See, for ex-
ample, [18].)

4 Mellin transform

We now apply the results of the previous sections to the
problem outlined in the introduction. Again we emphasise
that the aim of the exercise is to investigate the mathemat-
ics underlying the fitting to the Mellin transform of the
anomalous dimensions given only knowledge of the first
few moments. In QCD it is this transform which corre-
sponds to the DGLAP splitting functions, [10]. These are
a measure of the probability that a parton decomposes
into other partons ie quarks and gluons. The variable con-
jugate to the moment n is Bjorken x which represents
the momentum fraction carried by the parton in the nu-
cleon. Therefore it is restricted to lie in the unit interval.
Though in general the domain of x is the half-line. To ap-
proximate the three loop splitting functions in QCD the
authors of [9] took a set of trial functions of x whose prop-
erties were consistent with expected general behaviour of
the splitting functions in the unit interval and fixed the
unknown coefficients using the available exact 3-loop mo-
ments. For example, for the non-singlet case these expres-
sions are known for n = 2, 4, 6, 8 and 10. Of course such
an exercise is unnecessary if the full n-dependent result
was available. In [9] as a prelude to exploring the third
order correction the two loop result was examined. That
had the advantage of knowledge of the exact result of the
operator dimension for all n and hence the splitting func-
tions for all x. One disadvantage is that the second order
result has a simpler structure of functions of x than those
which would arise at next order. Also in this second order
case the result is unlikely to be unambiguous as only a
few moments are sufficient to isolate which of the set of
trial functions play the important role in, say, the small x
behaviour.

Having summarized the status of the QCD calculation
we can use our results at four loops in φ4 to try and gain
a more detailed insight into improvements to the fitting.
First, some elementary remarks are in order. It is impor-
tant to note that we are not claiming there is a parton
interpretation in φ4 theory. The lack of asymptotic free-
dom counts against this. Second, although the QCD cal-
culations are at third order and we have computed γn(g)
to four loops, it is in effect a third order calculation since
there is no one loop contribution. Therefore it is this fourth
order result which we will regard as being on the same
footing as the three loop QCD result although we are not
claiming that it has as complex a form. We begin by defin-
ing the Mellin transform of a function f(x) as

M[f(x)] =
∫ 1

0
dxxn−1f(x) (4.1)

where we restrict the function to exist on the unit inter-
val. In QCD the operator dimension is gauge independent
though the field dimension and the renormalization of the
bare operator are gauge dependent. As there is no gauge
symmetry in φ4 theory rather than take the full dimension
γn(g) we concentrate on the part γO(g). This is justified by
the fact that γ(g) is n-independent and therefore its con-
tribution to the x-dependence will be purely γ(g)δ(1 − x)
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Table 1. Symmetry factors for each graph defined in Fig. 2

Graph A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
Factor 1 1/4 1/2 1 1/2 1/4 1/8 1/2 1/4 1/6 1/6 1/4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
x Fig. 5. Two loop splitting function

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1
x

Fig. 6. Three loop splitting function
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0 0.2 0.4 0.6 0.8 1
x Fig. 7. Four loop splitting function

which is uninteresting for our study. With the definition
(4.1) it is straightforward to verify that the splitting func-
tions are given by

P (g, x) =
∞∑

n=2

Pn(x)gn (4.2)

where

P2(x) = (1 − x) (4.3)
P3(x) = − 2x ln(x) − 2(1 − x) ln(1 − x)

− 1
2 (1 − x)(3 ln(x) + 10) (4.4)

P4(x) = 8(1 − x)Li3(−x) − 4(1 − x) ln(x)Li2(−x)
− 3(1 − x)ψ′′(1)

− 4x ln(x)ψ′(1) +
2
3
x ln3(x)

+ 9(1 + x) ln(x) ln(1 + x)
+ 9(1 + x)Li2(−x) − 2(1 − x)Li2(x)
− 4xLi2(x)

+ (1 − x) ln(x) ln(1 − x) + 2(1 − x) ln2(1 − x)

+
89
6

(1 − x) ln(1 − x)

+ 13xψ′(1) + 3(1 − x)ψ′(1) +
93
4

(1 − x)

+
23
2

ln(x) +
11
8

ln2(x) − 27
8
x ln2(x)

+
9
2
x ln(x) (4.5)

In these expressions Lin(x) is the polylogarithm function
whose properties are well known, [19], and ψ(x) is the
logarithmic derivative of the Euler Γ -function. To gain

some idea into the form of these functions we have plotted
them in Figs. 5–7.

As a preliminary to the four loop analysis we first sum-
marize the method for the three loop case since the two
loop example is clearly trivial. The basic idea is to postu-
late a basis set of trial functions of x with arbitrary coeffi-
cients. These are fixed by using (4.1) to obtain a function
of n which can be evaluated for the first few moments
and compared with the analogous value of (2.18). Once
the coefficients have been fixed one can compare the ap-
proximate function with the exact result to see how well it
covers the function in the unit interval. It is worth point-
ing out that the trial set of functions ought to contain a
few which have logarithmic dependence given the nature
of the exact result and its form in Fig. 6. Therefore some
guidance on how good the fit is, is that it should be better
than taking a trial set which gives a polyniomial in x of
the appropriate degree. Given this criterion we discovered
that the set

{ 1, x, ln(x), ln(1 − x), x ln(1 − x) } (4.6)

gave a very good approximation. We have plotted this
approximation with the exact result in Fig. 8 where the
straight line is the exact result and the dots represent the
approximation. Interestingly the discrepancy at x = 0 is
about 0.12. Clearly to achieve this accuracy we have used
only five moments. However, comparing the functions of
(4.6) with the exact function one observes that x lnx is
absent. This illustrates a potential pitfall in fitting ap-
proximations to exact results. One feature of the three
loop case to emerge was the necessity of having functions
in the trial set which reproduced some of the functions of
x which appeared in the exact result. We repeated this
exercise with a variety of sets either with fewer functions
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Fig. 8. Approximation to the three
loop splitting function
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Fig. 9. Approximation to the four
loop splitting function with first trial
set

and therefore fewer moments or replaced several of the
entries in (4.6) with other functions. However the result
of Fig. 8 represents the best fit.

We have repeated this analysis for the 4-loop case.
From the form of the exact result it turns out to be a
harder exercise especially in covering the small x region
well. Again with the criterion that a fit must be better
than a polynomial, we managed to gain reasonable ap-
proximations with two trial sets. To achieve this we needed
to extend the set to seven elements and include higher

powers of the logarithm. Even with this, however, an an-
swer as accurate as three loops could not be achieved.
These sets were

{ 1, x, ln(x), ln2(x),Li2(x), ln(x)Li2(x), x ln(x) } (4.7)

{ 1, x, ln(x), ln2(x),Li2(x), ln(x)Li2(x),Li2(−x) } (4.8)

and we have plotted each beside the exact results respec-
tively in Figs 9 and 10. Although set (4.8) appears to
deviate in the middle x range it is clearly more accurate
for small x than (4.7). This is due to the alternating form
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Fig. 10. Approximation to the four
loop splitting function with second
trial set

of the expansion of the dilogarithm for small x. The re-
spective discrepancies at x = 0 from the exact and ap-
proximate answers were 2.5 and 0.5.

5 Conclusions

We have constructed the MS 4-loop anomalous dimensions
for a set of twist-2 operators which are analogous to oper-
ators which occur in the operator product expansion used
in deep inelastic scattering in QCD. In the course of exam-
ining the inverse Mellin transform for the four loop case we
found that it was important to isolate those functions of x
and include them in the fit that reproduced similar forms
to the basic finite sums that appear in the exact answer.
In the absence of a full exact answer for QCD it would
therefore seem to us that one could endeavour to improve
the fits of the anomalous dimensions, [9], in the low x-
region by trying to deduce the type of finite sums which
would occur at three loops. An insight into this could be
obtained by generalizing some of the series that already
occur in the exact two loop results. For instance, the sums
Sl(n) occur at l-loops for l = 1 and 2 and it would appear
odd if S3(n) did not occur in the 3-loop result. Therefore
another structure to study might arise from generalizing
those finite sums which only occur in the two loop result.
The other feature which we observed in our analysis was
that to maintain the accuracy one would require several
more exact moments for the anomalous dimensions.

Acknowledgements. The authors thank the organisers of the
conference ‘Renormalization Group 96’ where this work was
initiated. JAG is supported by PPARC through an Advanced
Fellowship, ANM is supported by Grant 97-01-01152 of the
Russian Fond for Fundamental Research and SED – by INTAS

Grant 93–2492–ext. Part of this work was carried out with
the aid of the computer algebra packages Reduce, [20], and
Maple version V.4.

A Values for 4-loop integrals

In this section we record the values of the divergent parts
of the integrals which arise in the computation of the 4-
loop anomalous dimension in MS. The label refers to the
diagrams of Fig. 2 though the values given here corre-
spond to those with the subgraph divergences removed.
We found

A1 =
1

24n(n+ 1)ε3

+
(

S1(n)
12n(n+ 1)

− (7n2 + 5n− 1)
24n2(n+ 1)2

)
1
ε2

+
(

− S2(n)
6n(n+ 1)

+
S2

1(n)
12n(n+ 1)

− (7n2 + 5n− 1)S1(n)
12n2(n+ 1)2

(A.1)

+
(25n4 + 36n3 + 7n2 − 4n+ 1)

24n3(n+ 1)3

)
1
ε

A2 =
1

12n(n+ 1)ε3
− (5n2 + 3n− 1)

12n2(n+ 1)2ε2

+
(9n4 + 8n3 − 3n2 − 2n+ 1)

12n3(n+ 1)3ε
(A.2)

A3 =
K2(n)

n2(n+ 1)2ε
(A.3)
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B1 =
1

24n(n+ 1)ε3

+
(

S1(n)
12n(n+ 1)

− (7n2 + 5n− 1)
24n2(n+ 1)2

)
1
ε2

+
(

S2(n)
3n(n+ 1)

+
S2

1(n)
12n(n+ 1)

− (7n2 + 5n− 1)S1(n)
12n2(n+ 1)2

+
(25n4 + 36n3 + 7n2 − 4n+ 1)

24n3(n+ 1)3

)
1
ε

(A.4)

B2 =
1

8n(n+ 1)ε3

+
1
ε2

(
S1(n)

12n(n+ 1)
− (11n2 + 5n− 3)

24n2(n+ 1)2

)

+
(

S2(n)
12n(n+ 1)

− S2
1(n)

6n(n+ 1)
− S1(n)(n2 − n− 1)

12n2(n+ 1)2

+
(13n4 + 4n3 − 11n2 − 2n+ 3)

24n3(n+ 1)3

)
1
ε

(A.5)

B3 =
1

12n(n+ 1)ε3

+
(

S1(n)
6n(n+ 1)

− (4n2 + 2n− 1)
12n2(n+ 1)2

)
1
ε2

+
(

S2(n)
6n(n+ 1)

+
S2

1(n)
6n(n+ 1)

− S1(n)(4n2 + 2n− 1)
6n2(n+ 1)2

− K2(n)
2n(n+ 1)

+
(4n4 − 5n2 − n+ 1)

12n3(n+ 1)3

)
1
ε

(A.6)

C1 =
1

4n(n+ 1)ε3
− (2n2 − 1)

4n2(n+ 1)2ε2

− (4n3 + 3n2 − n− 1)
4n3(n+ 1)3ε

(A.7)

C2 = C3 =
1

12n(n+ 1)ε3

+
(

S1(n)
6n(n+ 1)

− (4n2 + 2n− 1)
12n2(n+ 1)2

)
1
ε2

+
(

S2(n)
6n(n+ 1)

+
S2

1(n)
6n(n+ 1)

− S1(n)(4n2 + 2n− 1)
6n2(n+ 1)2

+
(4n4 − 5n2 − n+ 1)

12n3(n+ 1)3

)
1
ε

(A.8)

D1 =
1

16n(n+ 1)ε2
− (13n2 + 9n− 2)

32n2(n+ 1)2ε
(A.9)

D2 =
1

16n(n+ 1)ε2

+
(

S1(n)
8n(n+ 1)

− (3n+ 2)(3n+ 1)
32n2(n+ 1)2

)
1
ε

(A.10)

D3 = − 1
8n2(n+ 1)2ε2

− (n2 − n− 1)
4n3(n+ 1)3ε

(A.11)
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